Empirical advances with text mining of electronic health records
نویسندگان
چکیده
BACKGROUND Korian is a private group specializing in medical accommodations for elderly and dependent people. A professional data warehouse (DWH) established in 2010 hosts all of the residents' data. Inside this information system (IS), clinical narratives (CNs) were used only by medical staff as a residents' care linking tool. The objective of this study was to show that, through qualitative and quantitative textual analysis of a relatively small physiotherapy and well-defined CN sample, it was possible to build a physiotherapy corpus and, through this process, generate a new body of knowledge by adding relevant information to describe the residents' care and lives. METHODS Meaningful words were extracted through Standard Query Language (SQL) with the LIKE function and wildcards to perform pattern matching, followed by text mining and a word cloud using R® packages. Another step involved principal components and multiple correspondence analyses, plus clustering on the same residents' sample as well as on other health data using a health model measuring the residents' care level needs. RESULTS By combining these techniques, physiotherapy treatments could be characterized by a list of constructed keywords, and the residents' health characteristics were built. Feeding defects or health outlier groups could be detected, physiotherapy residents' data and their health data were matched, and differences in health situations showed qualitative and quantitative differences in physiotherapy narratives. CONCLUSIONS This textual experiment using a textual process in two stages showed that text mining and data mining techniques provide convenient tools to improve residents' health and quality of care by adding new, simple, useable data to the electronic health record (EHR). When used with a normalized physiotherapy problem list, text mining through information extraction (IE), named entity recognition (NER) and data mining (DM) can provide a real advantage to describe health care, adding new medical material and helping to integrate the EHR system into the health staff work environment.
منابع مشابه
Text and Data Mining for Biomedical Discovery
The biggest challenge for text and data mining is to truly impact the biomedical discovery process, enabling scientists to generate novel hypothesis to address the most crucial questions. Among a number of worthy submissions, we have selected six papers that exemplify advances in text and data mining methods that have a demonstrated impact on a wide range of applications. Work presented in this...
متن کاملText Data Mining of In-patient Nursing Records Within Electronic Medical Records Using KeyGraph
This research used a text data mining technique to extract useful information from nursing records within Electronic Medical Records. Although nursing records provide a complete account of a patient’s information, they are not being fully utilized. Such relevant information as laboratory results and remarks made by doctors and nurses is not always considered. Knowledge concerning the condition ...
متن کاملText Mining Electronic Health Records to Identify Hospital Adverse Events
Manual reviews of health records to identify possible adverse events are time consuming. We are developing a method based on natural language processing to quickly search electronic health records for common triggers and adverse events. Our results agree fairly well with those obtained using manual reviews, and we therefore believe that it is possible to develop automatic tools for monitoring a...
متن کاملExtracting information from textual documents in the electronic health record: a review of recent research.
OBJECTIVES We examine recent published research on the extraction of information from textual documents in the Electronic Health Record (EHR). METHODS Literature review of the research published after 1995, based on PubMed, conference proceedings, and the ACM Digital Library, as well as on relevant publications referenced in papers already included. RESULTS 174 publications were selected an...
متن کاملUsing text-mining techniques in electronic patient records to identify ADRs from medicine use.
This literature review included studies that use text-mining techniques in narrative documents stored in electronic patient records (EPRs) to investigate ADRs. We searched PubMed, Embase, Web of Science and International Pharmaceutical Abstracts without restrictions from origin until July 2011. We included empirically based studies on text mining of electronic patient records (EPRs) that focuse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 17 شماره
صفحات -
تاریخ انتشار 2017